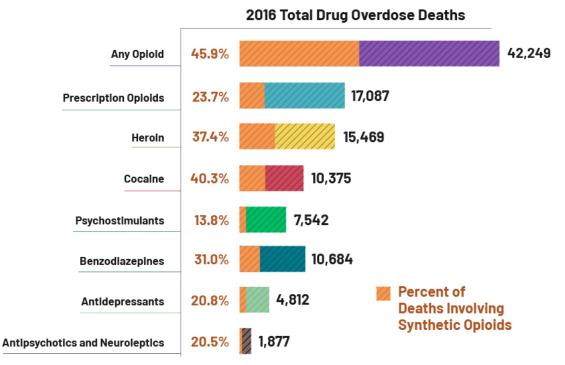
Quantification of Novel Synthetic Opioids in Blood Using LC-MS/MS

Janna Lowry, Michael T. Truver, Madeleine J. Swortwood

Department of Forensic Science Sam Houston State University Huntsville, TX, USA



Disclaimer

Authors have no conflicts to disclose.

Introduction

- HHS declared the opioid epidemic a public health emergency
- According to CDC, 66.4% of fatal overdoses in 2016 involved opioids
 - From 2015-2016, the number of fatal overdoses involving synthetic opioids doubled

Targeted Analytes

Analyte	Receptor Agonist	Potency Relevant to Morphine
U-47700	μ, κ-opioid	7.5x
AH-7921	μ, κ-opioid	Equipotent
U-49900	Unknown	Unknown
U-50488	к-opioid	Unknown
MT-45	μ, κ, δ-opioid	Equipotent
W-18	Reported to lack opioid receptor activity	Speculated to be 10,000x
W-15	Reported to lack opioid receptor activity	Unknown

Objective

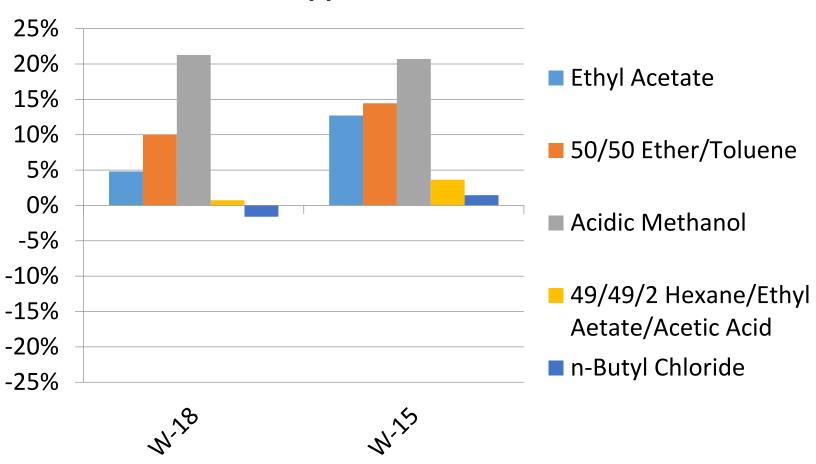
Quantification method

- Develop and optimize
- Validate (SWGTOX guidelines)
- U-47700, AH-7921, U-49900, U-50488, MT-45, W-18, and W-15
- Blood
- SPE
- LC-MS/MS

SPE Development and Optimization

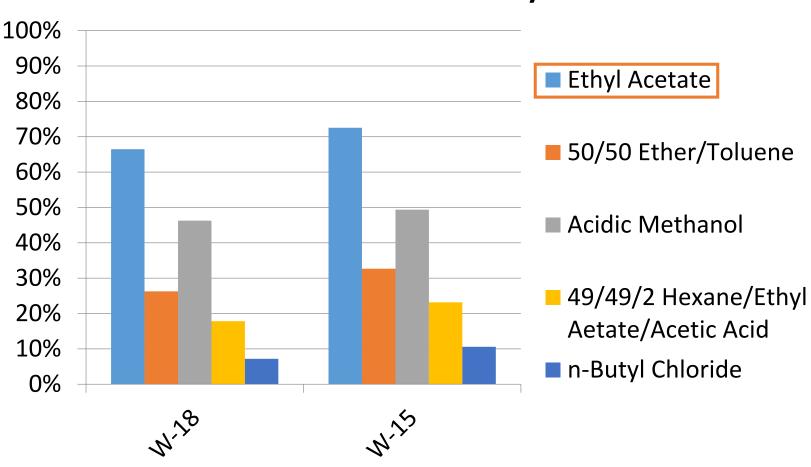
Acidic/neutral elution solvents

- Ethyl acetate
- 50/50 ether/toluene
- Acidic methanol
- 49/49/2 hexane/ethyl acetate/acetic acid
- n-butyl chloride

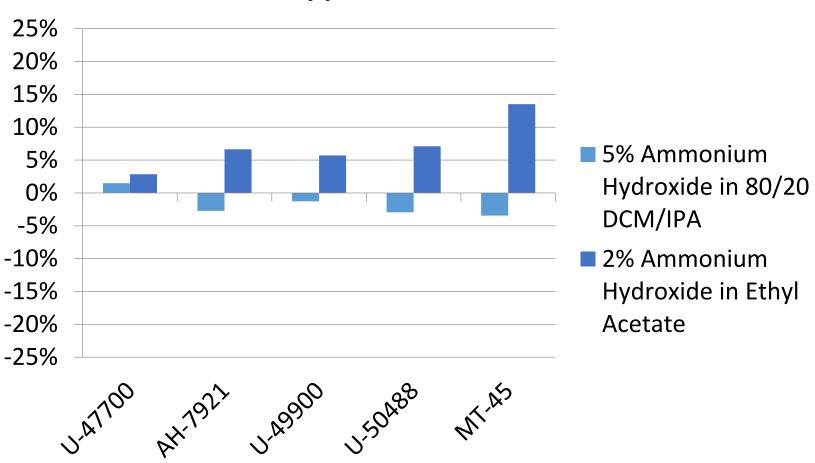

Basic elution solvents

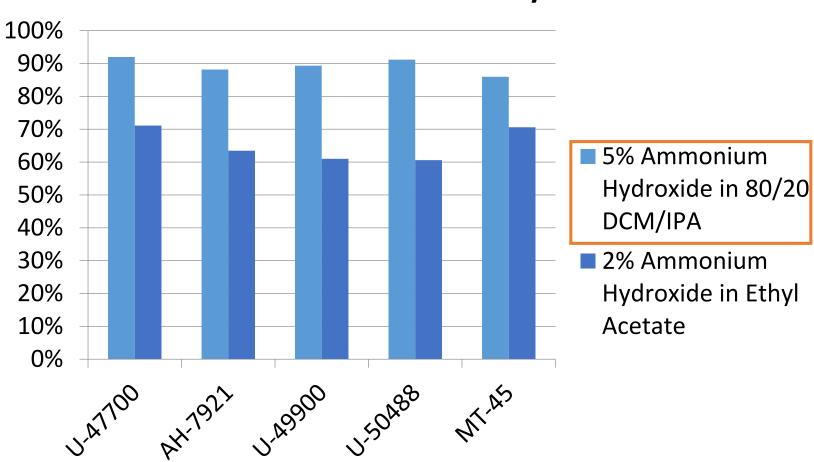
- 2% ammonium hydroxide in ethyl acetate
- 5% ammonium hydroxide in 80/20 DCM/IPA

Matrix effects and extraction recoveries were calculated for each analysis


Acidic/Neutral Elution Solvents

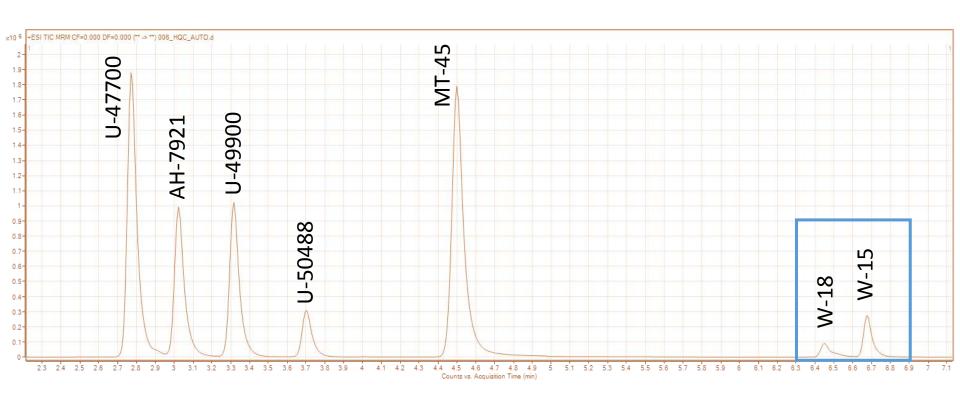
Ionization Suppression and Enhancement


Acidic/Neutral Elution Solvents


Basic Elution Solvents

Ionization Suppression and Enhancement

Basic Elution Solvents



LC-MS/MS Development and Optimization

Addition of ammonium formate to the aqueous mobile phase

• Improved peak shape and response for W-18 and W-15

Optimized SPE Method

0.5 mL blood + 2.5 mL phosphate buffer

Add sample to column (Cerex® Clin II SPE column)

2 mL washes (DI water, 1 M acetic acid)

Dry for 5 mins under positive pressure

2 mL wash (hexane)

2 mL acidic/neutral drug elution (ethyl acetate)

2 mL washes (methanol, DCM)

2 mL basic drug elution (5% ammonium hydroxide in 80/20 DCM/IPA)

Evaporate

Reconstitute in 80:20 mobile phase

Centrifuge

Optimized LC-MS/MS Method

Instrumentation

- Agilent 1290 Infinity II Liquid Chromatograph
- Agilent 6470 Triple Quadrupole Mass Spectrometer

Separation

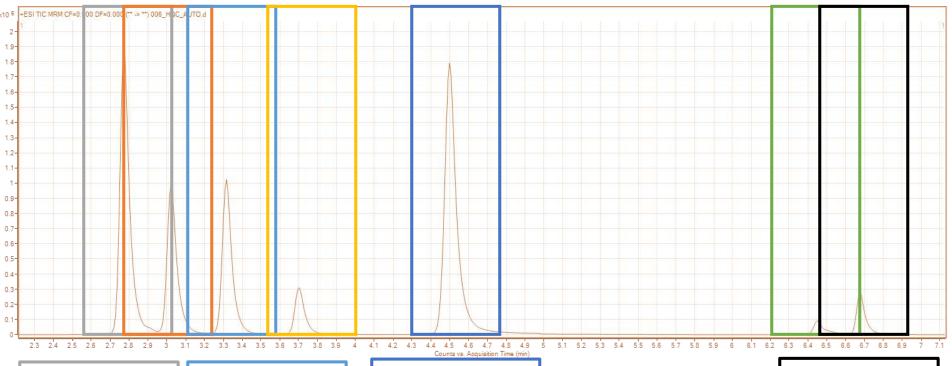
- Mobile phase A: 0.05% formic acid + 5 mM ammonium formate in water
- Mobile phase B: 0.1% formic acid in acetonitrile
- Gradient elution
- Agilent InfinityLab Poroshell 120 EC-C18 column

Data acquisition

- Positive electrospray ionization
- Dynamic multiple reaction monitoring (dMRM)
- Agilent MassHunter Workstation version B.07 software

dMRM

AH-7921


 $329.2 \rightarrow 144.9$ $329.2 \rightarrow 46.2$

U-50488

 $369.1 \rightarrow 158.9$ $369.1 \rightarrow 112.1$

W-18*

 $422.1 \rightarrow 111.0$ $422.1 \rightarrow 75.1$

U-47700*

 $329.2 \rightarrow 172.9$ $329.2 \rightarrow 144.9$

U-49900

 $357.1 \rightarrow 172.9$ $357.1 \rightarrow 144.9$

MT-45*

 $349.5 \rightarrow 181.0$ $349.5 \rightarrow 77.1$

W-15

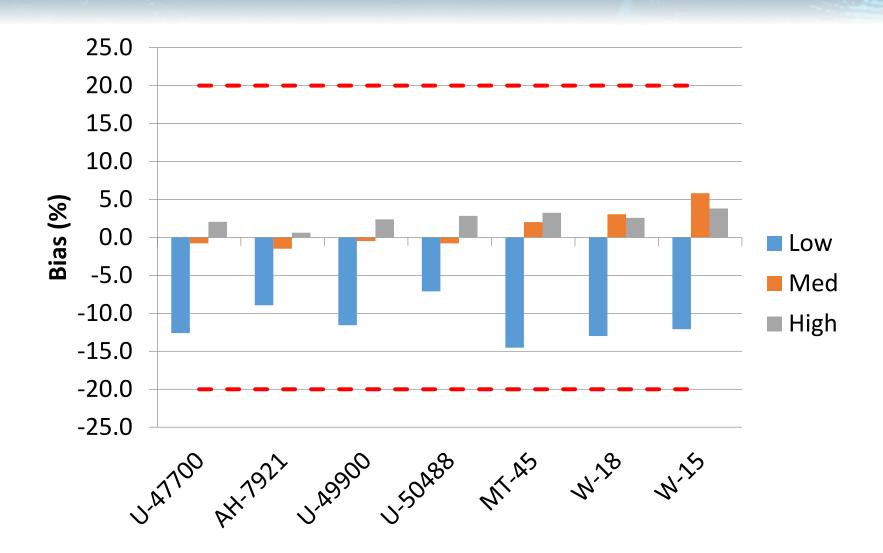
377.1 **→** 111.0

 $377.1 \rightarrow 75.1$

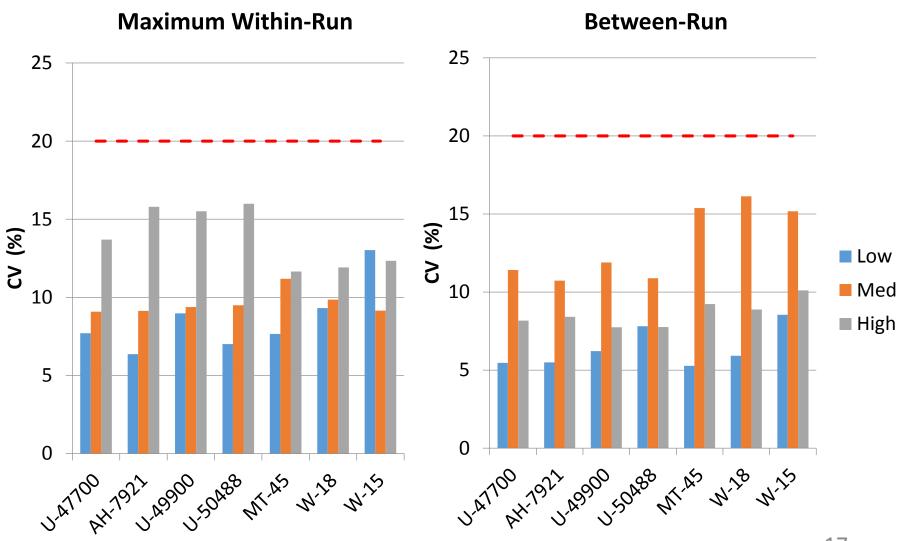
Validation Parameters

Calibration model

- 7 non-zero calibrators (6 for W-18)
- $R^2 > 0.99$
- Linear range
 - •0.25-100 ng/mL
 - 1–100 ng/mL (W-18)


LOD

- •0.125 ng/mL
- •0.25 ng/mL (W-18)


LOQ

- •0.25 ng/mL
- •1 ng/mL (W-18)

Bias

Precision

Validation Parameters

Interference studies

- Common drugs of abuse (32)
- 3 sources of blank matrix
- Negative samples (ISTD only)

Matrix effects

- 6 matrix sources
- ±21%
 - •28.4% (U-50488)
- •≤13% CV

Extraction efficiency

•62.6-96.6%

Validation Parameters

Dilution integrity

- 10-fold
- •±18%
 - •-23.8% (W-18)
- •< 3% CV

Carryover

 None detected following high calibrator

Stability

- All analytes were found to be stable (±17%) under each condition
 - 24h room temperature
 - 72h at 4°C
 - 72h in the autosampler

Authentic Samples

Postmortem blood samples (n = 30)

- Cardiac
- Peripheral
- Subclavian
- Femoral
- Iliac

Positive for U-47700

- 15 samples
- Range: 3.2-1448 ng/mL
- Mean: 214 ng/mL

Sample	U-47700 Concentration (ng/mL)	Other Opioids
1	1448	Furanyl Fentanyl
4	135	-
7	133	-

With Other Opioids: 266 ng/mL (3.2-1448 ng/mL)

Without Other Opioids: 155 ng/mL (43.1-354 ng/mL)

18	4.2	Oxycodone, Oxymorphone, 4-ANPP (Despropionyl Fentanyl), Furanyl Fentanyl
20	354	-
22	60.6	Furanyl Fentanyl, 4-ANPP (Despropionyl Fentanyl)
23	101	Fentanyl
25	43.1	-
27	53.7	4-ANPP (Despropionyl Fentanyl), Furanyl Fentanyl
28	118	-
30	109	<u>-</u>

Conclusion

Development and optimization

- Improved matrix effects and extraction efficiency
- Improved chromatography

Validation

- Performed in accordance with SWGTOX guidelines
- Parameters that exceeded requirements
 - U-50488 matrix effects
 - W-18 dilution integrity bias

Conclusion

First method reported

- Simultaneous quantification of these synthetic opioids in blood
- Quantification of W-18 and W-15 in blood

Method applications

- Driving under the influence cases
- Fatal drug intoxication cases

Questions?

Janna Lowry

Forensic Scientist
Texas Department of Public Safety

janna.lowry@dps.texas.gov